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Abstract

Designing distributed systems to have predictable perfor-
mance under high load is difficult because of resource ex-
haustion, nonlinearity, and stochastic behaviour. The ΔQ
Systems Development paradigm (ΔQSD), developed by PN-
Sol, addresses these difficulties by modelling systems using
outcome expressions, which are combinations of basic oper-
ations whose behaviour is defined stochastically. This paper
defines and proves algebraic properties of these operations
when the relevant resource is time (i.e., latency). This is part
of an ongoing project to disseminate and build tool support
for ΔQSD; for tooling, the ability to simplify outcome expres-
sions without changing the result is essential for managing
computational complexity. We show how the ΔQSD oper-
ators give rise to different algebraic structures. We prove
distributivity of the operators when possible. We prove for
the first time the validity of a set of folklore equivalences
that are in common usage for ΔQSD. An appendix gives a
worked example concerning a memory cache.

1 Introduction

Designing distributed systems to have predictable perfor-
mance under high load is difficult. At high load, resources
such as network, memory, storage, or CPU capacity will
be exhausted, which has a dramatic effect on performance.
Prediction is difficult because the behavior of system compo-
nents and their interactions are both nonlinear and stochastic.
For over 20 years, a small group of people associated with the
company PNSol has worked on diagnosing and designing
systems to predict and correct performance problems [6]. PN-
Sol has developed the ΔQ Systems Development paradigm
(ΔQSD) as part of this work. ΔQSD has been used in areas
as diverse as telecommunications [9] [8] [2], WiFi [4], and
distributed ledgers [1]. ΔQSD has been applied to many large
industrial systems, including BT, Vodafone, Boeing Space
and Defence, and IOG (formerly IOHK).

This paper defines and proves algebraic properties of the
ΔQSD operators with respect to timeliness, i.e., when the
relevant resource is time. This theoretical work is part of an

ongoing project to disseminate and build tool support for
ΔQSD, to make it available to the wide community of system
engineers. We base our work on the ΔQSD formalisation
given in [3], which defines outcome expressions and their
semantics, and gives a real-world example of ΔQSD taken
from the blockchain domain.

Scope of ΔQSD. The ΔQSD paradigm models distributed
systems to quantify risk and performance trade-offs. ΔQSD
can be used both for design and diagnosis:

• System Diagnosis. ΔQSD can analyse the observed
performance of a system, to pinpoint anomalous be-
haviours and fix them. Most past use of ΔQSD by PN-
Sol has been to diagnose and correct problems in large
industrial systems.

• System Design. ΔQSD can estimate performance trade-
offs during the design process. At every step, per-
formance of the complete system can be estimated
by a computation on the partial design. This compu-
tation also determines whether or not the system is
feasible, i.e., whether it can or cannot meet the require-
ments. PNSol has used ΔQSD to design the Shelley
block diffusion algorithm which is used in the Car-
dano blockchain [3].

A pedagogical introduction toΔQSD is available in a HiPEAC
2022 tutorial [11].

Concepts of ΔQSD. Here are three main ΔQSD concepts:

• Outcome: Any well-defined system behaviour delim-
ited by observable start and end events. For example,
the pair of a database request together with its re-
sponse defines an outcome.

• Quality Attenuation (ΔQ): An Improper Random Vari-
able (IRV) that defines the delay between start and end
event in an outcome, as well as its probability of failure.
In ΔQSD, timeliness analysis is the process of calculat-
ing the respective IRVs of outcomes, by which captur-
ing both delay and rate of failure in the same algebraic
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term. For example, the delay between a database re-
quest and response, given stochastically through its
cumulative distribution function.

• Outcome Expression: A combination of outcomes and
operators, which can model a whole system (Defini-
tion 2.1). Like system components that are composed
to form larger components, one composes outcomes
using the ΔQSD operators to form larger outcomes.
That is transliterated using outcome expressions. The
outcome expression is used to compute the ΔQ of the
whole system, given the ΔQ of the smaller outcomes.

Contributions of the paper. This paper is about alge-
braic analysis of outcome expressions, when timeliness of
outcomes is the concern. The contributions of this paper are:

• We give the first model theory of resource analysis
for systems specified using outcome expressions (Sec-
tion 3). We specialise that model theory in Section 4
using the timeliness analysis recipe that is commonly
in use in ΔQSD (Definition 4.2).

• We prove that the set of outcome expressions forms
different algebraic structures with the different ΔQSD
operators (Theorems 5.2–5.6).

• We prove four distributivity results about the ΔQSD
operators (Lemmata 6.1–6.4).

• We refute the formation of richer algebraic structures
by the set of outcome expressions and the current
ΔQSD operators (Remarks 5.5, 5.7, and 5.10).

• We provide guidelines for studying the existence of
other potential algebraic results (Section 7).

• We prove a dozen equivalences that have been used
in the past in the practice of ΔQSD (Section 8).

2 ΔQSD Background

This section is a recapitulation of what is already formalised
about ΔQSD [3]. The two cornerstones of ΔQSD that we will
detail in this section are quality attenuation and outcome
expressions. We will go through each in turn.
Contrary to the typical assumption in computer science,

in reality outcomes are never perfect; there is always a possi-
bility of error, delay, and failure. ΔQSD captures that aspect
of reality using its concept of quality attenuation, denoted by
the symbol ΔQ, which is a measure of how much the quality
of an outcome is attenuated relative to being perfect. ΔQSD
formulates performance management requirements in terms
of bounds that are to be maintained on ΔQs [5]. For reasons
that are explained in [3], ΔQs are IRVs, incorporating both
delay (a continuous random variable) and exceptions/failures
(discrete events). IRVs are those random variables the total
probability of which may not necessarily reach one [10].
Let ΔQ(x) denote the probability that an outcome occurs

in a time 𝑡 ≤ 𝑥 . Then, the intangible mass of such an IRV is
1 − lim𝑥→∞ Δ𝑄 (𝑥). For a ΔQ, the intangible mass encodes

the probability of exceptions or failure occurring over the
performance of the respective outcome.
IRVs naturally give rise to a partial order, in which the

‘smaller’ attenuation is the one that delivers a higher proba-
bility of completing the outcome in any given time:

Δ𝑄1 ≤ Δ𝑄2 ≡ ∀𝑥 . Δ𝑄1 (𝑥) ≥ Δ𝑄2 (𝑥). (1)
We distinguish two outcomes: ⊤ for “perfection” and ⊥ for
“unconditional failure.” ⊤ and ⊥ are the top and bottom ele-
ments of the above partial order, respectively.

To formally introduce outcome expressions, we first present
the notations we use in this paper.

LetA,B,C, . . . range over sets of values, and let lower case
letters,𝑎,𝑏, 𝑐 , . . . range over elements of those sets. Subscripts
and priming do not change the syntactic category of a symbol.
For example, for a set 𝐴, we write 𝐴 ∋ 𝑎 to indicate that
𝑎, 𝑎′, 𝑎′′, . . . , 𝑎1, 𝑎2, . . . all range over 𝐴. For scalar variables,
priming is to indicate a possibly different element of the same
syntactic category, whereas for functions, priming indicates
the derivative of the function.

Definition 2.1. Assume a set B ∋ 𝛽 of given base variables.
The abstract syntax of outcome expressions is:
O ∋ 𝑜 ::= 𝛽

| 𝑜 •→−• 𝑜 ′ sequential composition
| 𝑜

𝑚
⇋
𝑚′ 𝑜

′ probabilistic choice
| (𝑜 ∥∀ 𝑜 ′) all-to-finish (a.k.a. last-to-finish)
| (𝑜 ∥∃ 𝑜 ′) any-to-finish (a.k.a. first-to-finish)

Note that𝑚 and𝑚′ are the weights according to which
the choice goes to the left or the right respectively.

3 The Proof System

This section lays a foundation for resource analysis that is
particularly geared towards algebraic studies. We begin by
stating the compositionality requirements we expect the
analysis methods to establish. We give a formal definition
of when two formulae related to a common resource can be
considered equivalent. Then, we give notation for specifying
the formation of an algebraic structure.

Fix a set of resourcesH ranged over by 𝜌 . For every 𝜌 ∈ H,
we assume a set𝑅(𝜌) over which 𝜌 values range. For example,
time values range over R and number of CPU cycles ranges
over N. Call a function

𝑚𝜌 : B→ 𝑅(𝜌) (2)

a 𝜌-measuring of B. When appropriate, we assume that each
𝜌 is equipped with a unique 𝜌-measuring (of B). As such, we
will call that function the 𝜌-measuring (of B).

Fix P = {•→−•,⇋, ∥∀, ∥∃}. Given a 𝑃 ⊆ P, take the set F|𝑃
of 𝑃-formulae of O to be the smallest superset of O that is
closed under 𝑃 .

Definition 3.1. A 𝑃-equation 𝑒 ∈ E|𝑃 is of the form 𝑓𝑙 = 𝑓𝑟 ,
where 𝑓𝑙 , 𝑓𝑟 ∈ F|𝑃 , for some 𝑃 ⊆ P.
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Definition 3.2. Given a binary relation R on F|𝑃 , an R-
instance 𝑟 is of the form 𝑓𝑙 R 𝑓𝑟 , for some 𝑃 ⊆ P.

A structural extension to a 𝜌-measuring is a function

.̂𝜌 : (B→ 𝑅(𝜌)) → O→ 𝑅(𝜌) (3)

which, given a 𝜌-measuring, provides instructions for how
to compositionally measure outcome expressions. Given our
uniqueness assumption about the 𝜌-measuring, we also as-
sume, when appropriate, that each 𝜌 is equipped with a
unique extension to (its unique) 𝜌-measuring. From now on,
we will equate the 𝜌-measuring and its extension.

Definition 3.3. Say a 𝑃-equation 𝑓𝑙 = 𝑓𝑟 holds according to
the 𝜌-measuring when 𝑚̂𝜌 (𝑓𝑙 ) = 𝑚̂𝜌 (𝑓𝑟 ).

Definition 3.4. Given a binary relation R on F|𝑃 and its
image𝑚𝜌 (R) on 𝑅(𝜌), say an R-instance 𝑓𝑙 R 𝑓𝑟 holds ac-
cording to the 𝜌-measuring when 𝑚̂𝜌 (𝑓𝑙 ) 𝑚(R) 𝑚̂𝜌 (𝑓𝑟 ).

Observing a resource 𝜌 , when a 𝑃-equation 𝑒 holds ac-
cording to the 𝜌-measuring, write ⊙⊙ 𝜌 ⊨ 𝑒 . (Take “⊙⊙” to
be the two eyes of the observer.) When ⊙⊙ 𝜌 ⊨ 𝑒 for all
resources 𝜌 ∈ H, write ⊨ 𝑒 , as a generalisation. We extend all
the notation introduced in the paragraph to R-instances in
the trivial way to write ⊙⊙ 𝜌 ⊨ 𝑟 .

A 𝜌-theory on O is a set of 𝑃-equations 𝐸𝑃 such that ∀𝑒 ∈
𝐸𝑃 . ⊙⊙𝜌 ⊨ 𝑒 , for some 𝑃 ⊆ P. In that case, write ⊙⊙ 𝜌 ⊨ 𝐸𝑃 .
The 𝜌-algebraic properties of O are those 𝜌-theories which
demonstrate that O establishes an algebraic structure.

Definition 3.5. For an algebraic structure 𝑠 , say (O, 𝑃) is an
𝑠 when observing 𝜌 iff there exists a 𝜌-theory of 𝑃-equations
which establishes 𝑠 . Denote that as ⊙⊙ 𝜌 ⊨ (O, 𝑃) : 𝑠 .

4 Time

This section utilises the developments of Section 3 to focus on
a particular resource, i.e., time, and its analysis, i.e., timeliness
analysis. ΔQSD uses ΔQs for timeliness analysis.
Fix a set I ∋ 𝜄 of all IRVs that are differentiable and the

values of which are always greater than or equal to zero.
Statistically speaking, every 𝜄 can be represented both using
its PDF or its CDF. The former is the derivative of the latter.
As a result, we choose to liberally switch between the two
representations as the need rises.
Fix a countable set of ΔQ variables Δ𝑣 ∋ 𝛿𝑣 . Let Δ =

Δ𝑣 ∪ I, where Δ ∋ 𝛿 . When 𝛿 is in its CDF representation,
write 𝛿 ′ for its derivative, which is also the respective PDF
representation.

Definition 4.1. Call a function Δ◦ [[.]] : B → Δ a basic
assignment when Δ◦ [[⊤]] = 1 and Δ◦ [[⊥]] = 0, where 1 and
0 are the functions always returning the constants 1 and 0,
respectively.

Definition 4.2. Given a basic assignment Δ◦ [[.]] : B→ Δ,
define ΔQ[[.]]Δ◦ : O→ I such that

ΔQ[[𝛽]]Δ◦ =

{
1 when Δ◦ [[𝛽]] ∉ I
Δ◦ [[𝛽]] otherwise

ΔQ[[𝑜 •→−• 𝑜 ′]]Δ◦ = ΔQ[[𝑜]]Δ◦ ∗ ΔQ[[𝑜 ′]]Δ◦

ΔQ[[𝑜
𝑚
⇋
𝑚

𝑜 ′]]Δ◦ = 𝑚
𝑚+𝑚′ΔQ[[𝑜]]Δ◦ + 𝑚′

𝑚+𝑚′ΔQ[[𝑜 ′]]Δ◦

ΔQ[[∀(𝑜 ∥ 𝑜 ′)]]Δ◦ = ΔQ[[𝑜]]Δ◦ × ΔQ[[𝑜 ′]]Δ◦
ΔQ[[∃(𝑜 ∥ 𝑜 ′)]]Δ◦ =

ΔQ[[𝑜]]Δ◦ + ΔQ[[𝑜 ′]]Δ◦ − ΔQ[[𝑜]]Δ◦ × ΔQ[[𝑜 ′]]Δ◦

where ∗ denotes the convolution of two ΔQs. In the above
formulae, the random variables are always represented using
their CDFs except sequential composition, where the repre-
sentation is PDFs on both sides. Note that the PDF of⊤ is the
Dirac δ function. We denote the set of all basic assignments
by {Δ◦ [[.]]}.

Remark 4.3. The equalities of Definition 4.2 can be un-
derstood from straightforward probabilistic arguments, as
follows, where for any outcome X we define p[X] = proba-
bility of event X and ΔQ𝑋 (t) = p[X occurs within time t] (i.e.
the CDF of 𝑋 ).

Sequential composition. If we have two outcomes 𝑜 and
𝑜 ′ that occur sequentially, then the probability that 𝑜 •→−• 𝑜 ′
takes a time 𝑡 is the sum of all probabilities that 𝑜 takes
time 𝜏 < 𝑡 and 𝑜 ′ takes time 𝑡 − 𝜏 , which is the definition of
convolution.

Probabilistic choice. If we have a probabilistic choice
𝑜

𝑚
⇋
𝑚
𝑜 ′ between two outcomes 𝑜 and 𝑜 ′ with relative weights

𝑚 and 𝑛, then the only ways this event can occur within time
𝑡 are either: 𝑜 is chosen and occurs within time 𝑡 ; or 𝑜 ′ is
chosen and 𝑜 ′ occurs within time 𝑡 . Since these are mutually
exclusive events we can simply add their probabilities:

ΔQ
𝑜
𝑚
⇋
𝑚

𝑜′
(𝑡) =

𝑝 [𝑜occurs within time t ∩ 𝑜 is chosen]
+ 𝑝 [𝑜 ′occurs within time t ∩ 𝑜 ′ is chosen]

By the definition of conditional probability this can be
written as:

𝑝 [𝑜 occurs within time t | 𝑜 is chosen] × 𝑝 [𝑜 is chosen]
+ 𝑝 [𝑜 ′ occurs within time t | 𝑜 ′ is chosen] × 𝑝 [𝑜 ′ is chosen]

The probability that 𝑜 occurs within time 𝑡 given that 𝑜
is chosen is just ΔQ𝑜 (t), and the probabilities of each side
being chosen are the relative weights, so this expression is
just the weighted sum of the ΔQs as given in Definition 4.2.

Any and all to finish. If we have two independent out-
comes 𝑜 and 𝑜 ′, the probability that both occur (i.e. 𝑝 [∀(𝑜 ∥
𝑜 ′)]) is simply the product of their individual probabilities.
For any to finish, consider the probability that neither 𝑜 nor
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𝑜 ′ has occurred (by time 𝑡 ):

𝑝 [¬𝑜 ∩ ¬𝑜 ′] = 𝑝 [¬𝑜] × 𝑝 [¬𝑜 ′] =
(1 − 𝑝 [𝑜]) × (1 − 𝑝 [𝑜 ′]) = 1 − 𝑝 [𝑜] − 𝑝 [𝑜 ′] + 𝑝 [𝑜] × 𝑝 [𝑜 ′]
The probability that either or both of 𝑜 and 𝑜 ′ has occurred is
one minus this, so 𝑝 [∀(𝑜 ∥ 𝑜 ′)] = 𝑝 [𝑜] +𝑝 [𝑜 ′] −𝑝 [𝑜] ×𝑝 [𝑜 ′].

In what follows, we will drop Δ◦ whenever they are fixed
throughout a computation and can thus be neglected.

Taking 𝑅(𝜌) = I for 𝜌 = time, it is routine to observe that
• according to Equation (2), a basic assignment is a time-
measuring, and

• according to Equation (3), a ΔQ[[.]] . is an extension to
every time-measuring.

Armedwith that observation, we can start proving properties
of time (as a resource) as per Definition 3.3.

Remark 4.4. Note that, according to Definition 4.2, we get
ΔQ[[𝑜1 •→−• 𝑜2]] = ΔQ[[𝑜2 •→−• 𝑜1]] . This may seem counter-
intuitive at the first glance because 𝑜1 •→−• 𝑜2 ≠ 𝑜2 •→−• 𝑜1
and one expects that ΔQ[[.]] . acts accordingly. Nevertheless,
one realises that ΔQ[[𝑜1 •→−• 𝑜2]] = ΔQ[[𝑜2 •→−• 𝑜1]] is just
fine because, intuitively, 𝑜1 •→−• 𝑜2 is as timely as 𝑜2 •→−• 𝑜1.
So, the timeliness analysis too should give equal results for
the two. See the proof of Theorem 5.3 for the mathematical
justification of that intuition.

5 Algebraic Structures

This section proves O with
• probabilistic choice forms a magma (Theorem 5.2);
• sequential composition forms a commutative monoid
with ⊥ as the absorbing element (Theorem 5.3);

• all-to-finish forms a commutative monoid with ⊥ as
the absorbing element (Theorem 5.4);

• any-to-finish forms a commutative monoid with ⊤ as
the absorbing element (Theorem 5.6); and

• neither all-to-finish nor any-to-finish nor their combi-
nation form richer algebraic structures (Remarks 5.5,
5.7, and 5.10).

The statements of the results that appear hereafter in this
paper as well as their proofs have repetitive occurrences of
outcome variables and their respective timeliness analyses.
In order to prevent repetition in all that, we assume that
ΔQ[[𝑜1]] = 𝛿1, ΔQ[[𝑜2]] = 𝛿2, and ΔQ[[𝑜3]] = 𝛿3; and that,
unless stated otherwise, 𝛿1, 𝛿2, and 𝛿3 are all in their CDF
representations.
Proposition 5.1 is a simple yet handy result that we will

use frequently in our proofs.

Proposition 5.1. Suppose that 𝑜1 = 𝑜2•→−•𝑜3. Then, ⊙⊙time ⊨
𝛿1 (𝑡) =

∫
(𝛿 ′2 ∗ 𝛿 ′3) (𝑡) d𝑡 .

Proof. According to Definition 4.2, for all suitably ranged 𝑡 ,

𝛿 ′1 (𝑡) = (𝛿 ′2 ∗ 𝛿 ′3) (𝑡).

Integrating the two sides, one gets∫
𝛿 ′1 (𝑡) d𝑡 = 𝛿1 (𝑡) =

∫
(𝛿 ′2 ∗ 𝛿 ′3) (𝑡) d𝑡 ,

as desired. □

Theorem 5.2. (O,⇋) forms a magma when observing time.

Proof. The only property that is required is closedness of O
under⇋, which is already a part of Definition 2.1. □

A magma is the weakest algebraic structure. That is be-
cause⇋ is not even associative. Despite that, one can still
reassociate expressions with two consecutive occurrences of
⇋. The only thing is that the coefficients will change by such
reassociations. Lemmata 8.1 and 8.2 give the exact formulae.
One may notice that Theorem 5.2 avoids the compact

notation introduced by Definition 3.5 for specifying the al-
gebraic structure (O,⇋) forms. That is because, in Defini-
tions 3.3 and 3.4, we are only interested in the algebraic
structures established using equational (or otherwise binary
relational) theories. Closedness – the only property required
by a magma – is not an equational (or otherwise binary
relational) property.

Theorem 5.3. ⊙⊙ time ⊨ (O, •→−•) : commutative monoid
with ⊥ as the absorbing element.

Proof. There are four properties to establish:
Associativity. ⊙⊙ time ⊨ 𝑜1 •→−• (𝑜2 •→−• 𝑜3) = (𝑜1 •→−•

𝑜2) •→−• 𝑜3 because

ΔQ[[𝑜1 •→−• (𝑜2 •→−• 𝑜3)]] = (𝛿1 ∗ 𝛿2) ∗ 𝛿3 = 𝛿1 ∗ (𝛿2 ∗ 𝛿3)
= ΔQ[[(𝑜1 •→−• 𝑜2) •→−• 𝑜3]] .

The associativity of convolution is due to Strichartz [7, §3.3].
Commutativity. ⊙⊙ 𝑡𝑖𝑚𝑒 ⊨ 𝑜1 •→−•𝑜2 = 𝑜2 •→−•𝑜1 because,

according to Proposition 5.1

ΔQ[[𝑜1 •→−• 𝑜2]] =∫
(𝛿 ′1 ∗ 𝛿 ′2) (𝑡) d𝑡 =

∬
𝛿 ′1 (𝑡)𝛿 ′2 (𝑡 − 𝜏) d𝑡 d𝜏 =∬

𝛿 ′1 (𝜏)𝛿 ′2 (𝜏 − 𝑡) d𝜏 d𝑡 =
∫

(𝛿 ′2 ∗ 𝛿 ′1) (𝜏) d𝜏

= ΔQ[[𝑜2 •→−• 𝑜1]] .

Identity Element. Take 𝑒 = ⊤. Recall that ΔQ[[𝑒]] = 1
in the CDF representation and (1) ′ = δ, where δ is Dirac’s
unitary impulse function. Choose an outcome 𝑜 such that
ΔQ[[𝑜]] = 𝛿 ′ so that 𝛿 be in its CDF representation. Then, by
Definition 4.2

ΔQ[[𝑒 •→−• 𝑜]] =
∫

(δ ∗ 𝛿 ′) (𝑡) d𝑡 =
∫

𝛿 ′(𝑡) d𝑡 = 𝛿

= ΔQ[[𝑜]]

implying ⊙⊙ time ⊨ ⊤ •→−• 𝑜 = 𝑜 . Note that, because convo-
lution is commutative, ⊤ is also the right identity element.
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Absorbing Element. ⊙⊙ 𝑡𝑖𝑚𝑒 ⊨ ⊥ •→−• 𝑜 = ⊥ because,
according to Proposition 5.1,

ΔQ[[⊥ •→−• 𝑜]] =
∫

(0′ ∗ 𝛿 ′) (𝑡) d𝑡

=

∬
0 × 𝛿 ′(𝑡) d𝜏 d𝑡 = 0 = ΔQ[[⊥]] .

Commutativity of •→−• implies that 𝑜 •→−• ⊥ = ⊥ too. □

Theorem 5.4. ⊙⊙ time ⊨ (O, ∥∀) : commutative monoid with
⊥ as the absorbing element.

Proof. There are four properties to establish:
Associativity. ⊙⊙ time ⊨ 𝑜1 ∥∀ (𝑜2 ∥∀ 𝑜3) = (𝑜1 ∥∀ 𝑜2) ∥∀

𝑜3 because

ΔQ[[𝑜1 ∥∀ (𝑜2 ∥∀ 𝑜3)]] = (𝛿1 × 𝛿2) × 𝛿3 = 𝛿1 × (𝛿2 × 𝛿3)
= ΔQ[[(𝑜1 ∥∀ 𝑜2) ∥∀ 𝑜3]] .

Commutativity. Follows from the commutativity of func-
tion multiplication. That is, ⊙⊙ time ⊨ 𝑜1 ∥∀ 𝑜2 = 𝑜2 ∥∀ 𝑜1
because

ΔQ[[𝑜1 ∥∀ 𝑜2]] = 𝛿1 × 𝛿2 = 𝛿2 × 𝛿1 = ΔQ[[𝑜2 ∥∀ 𝑜1]] .

Identity Element. Take 𝑒 = ⊤. Choose an outcome 𝑜 such
that ΔQ[[𝑜]] = 𝛿 so that 𝛿 be in its CDF representation. Then,
by Definition 4.2

ΔQ[[𝑒 ∥∀ 𝑜]] = 1 × 𝛿 = 𝛿 = ΔQ[[𝑜]] ,

which implies ⊙⊙ time ⊨ ⊤ ∥∀ 𝑜 = 𝑜 . Note that, because
function multiplication is commutative, ⊤ is also the right
identity element.

Absorbing Element. ⊙⊙ 𝑡𝑖𝑚𝑒 ⊨ ⊥ ∥∀ 𝑜 = ⊥ because

ΔQ[[⊥ ∥∀ 𝑜]] = 0 × 𝛿 = 0 = ΔQ[[⊥]] .

The result follows by the commutativity of ∥∀. □

Remark 5.5. It is important to notice that, when observing
time, (O, ∥∀) does not form a group. That is because, in gen-
eral, an outcome has no inverse element - intuitively, one
can never undo an outcome!
In order to prove that claim formally, suppose otherwise.

That is, suppose that there exist a pair of outcomes 𝑜1 and
𝑜2 such that 𝑜1 ∥∀ 𝑜2 = ⊤. Then,

ΔQ[[𝑜1 ∥∀ 𝑜2]] = ΔQ[[⊤]] ⇒ 𝛿1 × 𝛿2 = 1 ⇒ 𝛿2 =
1
𝛿1
.

However, given that 𝛿1 ≤ 1, we get 𝛿2 ≥ 1. The latter in-
equality can only be satisfied when 𝑜1 = ⊤. Restricting the
application of ΔQSD to perfection is not practical.

Theorem 5.6. ⊙⊙time ⊨ (O, ∥∃) : commutative monoid with
⊤ as the absorbing element.

Proof. There are four properties to establish:

Associativity. Suppose that ΔQ[[𝑜1]] = 𝛿1, ΔQ[[𝑜2]] = 𝛿2,
and ΔQ[[𝑜3]] = 𝛿3, all in their CDF representations. Then,
⊙⊙ time ⊨ 𝑜1 ∥∀ (𝑜2 ∥∀ 𝑜3) = (𝑜1 ∥∀ 𝑜2) ∥∀ 𝑜3 because

ΔQ[[𝑜1 ∥∃ (𝑜2 ∥∃ 𝑜3)]] = 𝛿1 + (𝛿2 + 𝛿3 − 𝛿2𝛿3)
− 𝛿1 (𝛿2 + 𝛿3 − 𝛿2𝛿3) =

𝛿1 + 𝛿2 + 𝛿3 − 𝛿2𝛿3 − 𝛿1𝛿2 − 𝛿1𝛿3 + 𝛿1𝛿2𝛿3 =

(𝛿1 + 𝛿2 − 𝛿1𝛿2) + 𝛿3 − (𝛿1 + 𝛿2 − 𝛿1𝛿2)𝛿3 =
ΔQ[[(𝑜1 ∥∃ 𝑜2) ∥∃ 𝑜3]] .

Commutativity. Follows from the commutativity of func-
tion multiplication and addition. That is, ⊙⊙ time ⊨ 𝑜1 ∥∃
𝑜2 = 𝑜2 ∥∃ 𝑜1 because

ΔQ[[𝑜1 ∥∃ 𝑜2]] = 𝛿1 + 𝛿2 − 𝛿1𝛿2

= 𝛿2 + 𝛿1 − 𝛿2𝛿1 = ΔQ[[𝑜2 ∥∃ 𝑜1]] .

Identity Element. Take 𝑒 = ⊥. Choose an outcome 𝑜 such
that ΔQ[[𝑜]] = 𝛿 so that 𝛿 be in its CDF representation. Then,
by Definition 4.2

ΔQ[[𝑒 ∥∃ 𝑜]] = 0 + 𝛿 − 0 × 𝛿 = 𝛿 = ΔQ[[𝑜]] ,

which implies ⊙⊙ time ⊨ ⊥ ∥∃ 𝑜 = 𝑜 . It follows from commu-
tativity of ∥∃ that ⊥ is also the right identity element.
Absorbing Element. ⊙⊙ 𝑡𝑖𝑚𝑒 ⊨ ⊤ ∥∃ 𝑜 = ⊤ because

ΔQ[[⊤ ∥∃ 𝑜]] = 1 + 𝛿 − 1 × 𝛿 = 1 = ΔQ[[⊤]] .

The result follows by commutativity of ∥∀. □

Remark 5.7. Similar to the case for ∥∀, it is important to
note that, when observing time, (O, ∥∃) does not form a
group. Again, it is the lack of an inverse element that is
causing the trouble. Here is how:

Suppose that there exist a pair of outcomes 𝑜1 and 𝑜2 such
that 𝑜1 ∥∃ 𝑜2 = ⊥. Then,

ΔQ[[𝑜1 ∥∃ 𝑜2]] = ΔQ[[⊥]] ⇒ 𝛿1 + 𝛿2 − 𝛿1 × 𝛿2 = 0

⇒ 𝛿2 =
𝛿1

𝛿1 − 1
.

However, because 𝛿1 ≤ 1, we get 𝛿2 ≤ 0. But, only ⊥ can
satisfy the latter inequality. There is no reason to develop a
system all the outcomes of which will fail unconditionally!

Having established that both (O, ∥∀) and (O, ∥∃) form
commutative monoids, when observing time, one immedi-
ately wonders whether (O, ∥∀, ∥∃) or (O, ∥∃, ∥∀) form semir-
ings. Neither of those are, however, a semiring because they
do not distribute over one another.

Proposition 5.8 and Corollary 5.9 help Remark 5.10 demon-
strate how the above desirable dstributivities fail. In Propo-
sition 5.8, we write ⊙⊙ time ⊨ 𝑜1 ≤ 𝑜2 for when ΔQ[[𝑜1]] ≤
ΔQ[[𝑜2]] . This is a routine extension of Definition 4.2 w.r.t.
Definition 3.4 that is in line with the partial ordering of ΔQs.

Proposition 5.8. ⊙⊙ time ⊨ 𝑜1 ∥∃ 𝑜2 ≤ 𝑜1 and ⊙⊙ time ⊨
𝑜1 ∥∃ 𝑜2 ≤ 𝑜2, for every 𝑜1, 𝑜2 ∈ O.
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Proof. We prove that ⊙⊙ time ⊨ 𝑜1 ∥∃ 𝑜2 ≤ 𝑜1. By commu-
tativity of ∥∃ (Theorem 5.6), it also follows that ⊙⊙ time ⊨
𝑜1 ∥∃ 𝑜2 ≤ 𝑜2.

In order to prove the desired inequality, suppose otherwise.
That is, suppose that ⊙⊙time ⊨ 𝑜1 ∥∃ 𝑜2 > 𝑜1. Then, according
to Equation (1):

ΔQ[[𝑜1 ∥∃ 𝑜2]] < ΔQ[[𝑜1]] ⇒ 𝛿1 + 𝛿2 − 𝛿1𝛿2 < 𝛿1

⇒ 𝛿2 − 𝛿1𝛿2 < 0
⇒ 𝛿2 (1 − 𝛿1) < 0

But, that is impossible because, 𝛿2 ≥ 0 and 𝛿1 ≤ 1. □

Corollary 5.9. ⊙⊙ time ⊨ ∃(𝑜1 ∥ 𝑜2) = ⊤ implies 𝑜1 = ⊤
and 𝑜2 = ⊤.

Proof. By Proposition 5.8, ∃(𝑜1 ∥ 𝑜2) = ⊤ ≤ 𝑜1, which
implies 𝑜1 = ⊤. □

Remark 5.10. Neither (O, ∥∀, ∥∃) nor (O, ∥∃, ∥∀) form a
semiring, when observing time. For either of those two to
be the case, ∥∀ and ∥∃ need to distribute over one another.
Here, we investigate each distributivity.

The first distributivity requirement is

𝑜1 ∥∃ (𝑜2 ∥∀ 𝑜3)
?
= (𝑜1 ∥∃ 𝑜2) ∥∀ (𝑜1 ∥∃ 𝑜3) (4)

Now, note that

ΔQ[[𝑜1 ∥∃ (𝑜2 ∥∀ 𝑜3)]] = 𝛿1 + 𝛿2𝛿3 − 𝛿1𝛿2𝛿3 (5)

and

ΔQ[[(𝑜1 ∥∃ 𝑜2) ∥∀ (𝑜1 ∥∃ 𝑜3)]]
= (𝛿1 + 𝛿2 − 𝛿1𝛿2) (𝛿1 + 𝛿3 − 𝛿1𝛿3)
= 𝛿21 + 𝛿1𝛿3 − 𝛿21𝛿3 + 𝛿1𝛿2 + 𝛿3𝛿2 − 𝛿1𝛿3𝛿2 − 𝛿21𝛿2 − 𝛿1𝛿2𝛿3

+ 𝛿21𝛿2𝛿3 (6)

In the favour of Equation (4), then, Equating the right-hand-
sides of Equations (5) and (6), one gets

𝛿21 + 𝛿1𝛿3 − 𝛿21𝛿3 + 𝛿1𝛿2 − 𝛿21𝛿2 − 𝛿1𝛿2𝛿3 + 𝛿21𝛿2𝛿3 − 𝛿1 = 0 ⇒
𝛿1 [𝛿1 + 𝛿3 − 𝛿1𝛿3 + 𝛿2 − 𝛿1𝛿2 − 𝛿2𝛿3 + 𝛿1𝛿2𝛿3 − 1] = 0

Hence, either 𝛿1 = 0 or

𝛿1 + 𝛿3 − 𝛿1𝛿3 + 𝛿2 − 𝛿1𝛿2 − 𝛿2𝛿3 + 𝛿1𝛿2𝛿3 = 1 ⇒
(𝛿1 + 𝛿3 − 𝛿1𝛿3) + 𝛿2 − 𝛿2 (𝛿1 + 𝛿3 − 𝛿1𝛿3) = 1 ⇒
ΔQ[[(𝑜1 ∥∃ 𝑜3) ∥∃ 𝑜2]] = ⊤.
In other words, it follows by Corollary 5.9 that Equation (4)
can only hold under the trivial conditions when 𝑜1 = ⊥ or
𝑜1 = 𝑜2 = 𝑜3 = ⊤.

The second distributivity requirement is

𝑜1 ∥∀ (𝑜2 ∥∃ 𝑜3)
?
= (𝑜1 ∥∀ 𝑜2) ∥∃ (𝑜1 ∥∀ 𝑜3) (7)

Now, note that

ΔQ[[𝑜1 ∥∀ (𝑜2 ∥∃ 𝑜3)]] = 𝛿1 (𝛿2 + 𝛿3 − 𝛿2𝛿3)
= 𝛿1𝛿2 + 𝛿1𝛿3 − 𝛿1𝛿2𝛿3 (8)

and

ΔQ[[(𝑜1 ∥∀ 𝑜2) ∥∃ (𝑜1 ∥∀ 𝑜3)]]
= (𝛿1𝛿2) + (𝛿1𝛿3) − (𝛿1𝛿2) (𝛿1𝛿3)
= 𝛿1𝛿2 + 𝛿1𝛿3 − 𝛿21𝛿2𝛿3 (9)

In the favour of Equation (7), then, Equating the right-hand-
sides of Equations (8) and (9), one gets

𝛿1𝛿2 + 𝛿1𝛿3 − 𝛿1𝛿2𝛿3 = 𝛿1𝛿2 + 𝛿1𝛿3 − 𝛿21𝛿2𝛿3

which implies that Equation (7) only holds trivially when
𝛿1 = 1∧𝛿2 ≠ 0∧𝛿3 ≠ 0, i.e., when 𝑜1 = ⊤∧𝑜2 ≠ ⊥∧𝑜3 ≠ ⊥.

6 Distributivity

In this section, we go through a number of distributivity
results that we succeeded in establishing (Lemmata 6.1–6.4).
In the next section, we will give detail on why we find some
distributivity results not to hold in general. We work out
conditions required for the availability of those distributivity
results. Such a discussion is still useful because it helps one
to verify, under special circumstances, whether their given
IRVs can satisfy the provided conditions.
Here is a syntactic convention that we will adhere to:

When, in an equivalence, a couple of⇋s are used without
weights, each on one and only one side of the equivalence, we
assume that the weights of those⇋s are the same. Therefore,
we do not bother to repeat those weights. For example, in
the lemma below, there are supposed to exist to weights𝑚2

and𝑚3 such that 𝑜2
𝑚2
⇋
𝑚3

𝑜3 and (𝑜1 •→−• 𝑜2)
𝑚2
⇋
𝑚3

(𝑜1 •→−• 𝑜3).

Lemma 6.1. ⊙⊙ time ⊨ 𝑜1 •→−• (𝑜2 ⇋ 𝑜3) = (𝑜1 •→−• 𝑜2) ⇋
(𝑜1 •→−• 𝑜3), where 𝑜1, 𝑜2, 𝑜3 ∈ O.

Proof. Fix some coefficients 𝑚2 and 𝑚3. ⊙⊙ time ⊨ 𝑜1 •→−•
(𝑜2

𝑚2
⇋
𝑚3

𝑜3) = (𝑜1 •→−• 𝑜2)
𝑚2
⇋
𝑚3

(𝑜1 •→−• 𝑜3) because

ΔQ[[𝑜1 •→−• (𝑜2
𝑚2
⇋
𝑚3

𝑜3)]] = (Proposition 5.1)∫ (
𝛿 ′1 ∗

(
𝑚2

𝑚2 +𝑚3
𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿3

) ′)
(𝑡) d𝑡 =∫ (

𝛿 ′1 ∗
(

𝑚2

𝑚2 +𝑚3
𝛿 ′2 +

𝑚3

𝑚2 +𝑚3
𝛿 ′3

))
(𝑡) d𝑡 =∬

𝛿 ′1 (𝑡 − 𝜏)
(

𝑚2

𝑚2 +𝑚3
𝛿 ′2 (𝜏) +

𝑚3

𝑚2 +𝑚3
𝛿 ′3 (𝜏)

)
d𝜏 d𝑡 =∬

𝑚2

𝑚2 +𝑚3
𝛿 ′1 (𝑡 − 𝜏)𝛿 ′2 (𝜏) d𝜏 d𝑡+∬
𝑚3

𝑚2 +𝑚3
𝛿 ′1 (𝑡 − 𝜏)𝛿 ′3 (𝜏) d𝜏 d𝑡 =∫

𝑚2

𝑚2 +𝑚3

∫
𝛿 ′1 (𝑡 − 𝜏)𝛿 ′2 (𝜏) d𝜏 d𝑡+∫

𝑚3

𝑚2 +𝑚3

∫
𝛿 ′1 (𝑡 − 𝜏)𝛿 ′3 (𝜏) d𝜏 d𝑡 =
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𝑚2

𝑚2 +𝑚3

∫
(𝛿 ′1 ∗ 𝛿 ′2) (𝑡) d𝑡+

𝑚3

𝑚2 +𝑚3

∫
(𝛿 ′1 ∗ 𝛿 ′3) (𝑡) d𝑡 = (Proposition 5.1)

𝑚2

𝑚2 +𝑚3
ΔQ[[𝑜1 •→−• 𝑜2]] d𝑡 +

𝑚3

𝑚2 +𝑚3
ΔQ[[𝑜1 •→−• 𝑜2]] =

ΔQ[[(𝑜1 •→−• 𝑜2)
𝑚2
⇋
𝑚3

(𝑜1 •→−• 𝑜3)]] .
□

Lemma 6.2. ⊙⊙ time ⊨ (𝑜1 ⇋ 𝑜2) •→−• 𝑜3 = (𝑜1 •→−• 𝑜3) ⇋
(𝑜2 •→−• 𝑜3), where 𝑜1, 𝑜2, 𝑜3 ∈ O.
Proof. When observing time,
(𝑜1⇋ 𝑜2) •→−• 𝑜3 = (Theorem 5.3)
𝑜3 •→−• (𝑜1⇋ 𝑜2) = (Lemma 6.1)
(𝑜3 •→−• 𝑜1)⇋ (𝑜3 •→−• 𝑜2) = (Theorem 5.3)
(𝑜1 •→−• 𝑜3)⇋ (𝑜2 •→−• 𝑜3).

□

Lemma 6.3. When observing time, ∥∀ distributed over ⇋
from both left and right.

Proof. Fix coefficients𝑚2 and𝑚3. ⊙⊙ time ⊨ 𝑜1 ∥∀(𝑜2
𝑚2
⇋
𝑚3

𝑜3) =

(𝑜1 ∥∀ 𝑜3)
𝑚2
⇋
𝑚3

(𝑜1 ∥∀ 𝑜3) because

ΔQ[[𝑜1 ∥∀ (𝑜2
𝑚2
⇋
𝑚3

𝑜3)]] =

𝛿1 (
𝑚2

𝑚2 +𝑚3
𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿3) =

𝑚2

𝑚2 +𝑚3
𝛿1𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿1𝛿3 =

𝑚2

𝑚2 +𝑚3
ΔQ[[∀(𝑜1 ∥ 𝑜2)]] +

𝑚3

𝑚2 +𝑚3
ΔQ[[∀(𝑜1 ∥ 𝑜3)]] =

ΔQ[[(𝑜1 ∥∀ 𝑜3)
𝑚2
⇋
𝑚3

(𝑜1 ∥∀ 𝑜3)]] .

Similar to Lemma 6.2, one concludes that ⊙⊙ time ⊨ (𝑜1⇋
𝑜2) ∥∀ 𝑜3 = (𝑜1 ∥∀ 𝑜3)⇋ (𝑜1 ∥∀ 𝑜3) too. □

Lemma 6.4. When observing time, ∥∃ distributes over ⇋
from both left and right.

Proof. Fix coefficients𝑚2 and𝑚3. ⊙⊙ time ⊨ 𝑜1 ∥∃ (𝑜2
𝑚2
⇋
𝑚3

𝑜3) =

(𝑜1 ∥∃ 𝑜3)
𝑚2
⇋
𝑚3

(𝑜1 ∥∃ 𝑜3) because

ΔQ[[𝑜1 ∥∃ (𝑜2
𝑚2
⇋
𝑚3

𝑜3))]] =

𝛿1 +
(

𝑚2

𝑚2 +𝑚3
𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿3

)
−

𝛿1

(
𝑚2

𝑚2 +𝑚3
𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿3

)
=

𝛿1 +
(

𝑚2

𝑚2 +𝑚3
𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿3

)
−(

𝑚2

𝑚2 +𝑚3
𝛿1𝛿2 +

𝑚3

𝑚2 +𝑚3
𝛿1𝛿3

)
=

𝑚2

𝑚2 +𝑚3
(𝛿1 + 𝛿2 − 𝛿1𝛿2) +

𝑚3

𝑚2 +𝑚3
(𝛿1 + 𝛿3 − 𝛿1𝛿3) =

𝑚2

𝑚2 +𝑚3
ΔQ[[∃(𝑜1 ∥ 𝑜2)]] +

𝑚3

𝑚2 +𝑚3
ΔQ[[∃(𝑜1 ∥ 𝑜3)]] =

ΔQ[[(𝑜1 ∥∃ 𝑜3)
𝑚2
⇋
𝑚3

(𝑜1 ∥∃ 𝑜3)]] .

Similar to Lemma 6.2, one concludes that ⊙⊙ time ⊨ (𝑜1⇋
𝑜2) ∥∃ 𝑜3 = (𝑜1 ∥∃ 𝑜3)⇋ (𝑜1 ∥∃ 𝑜3) too. □

7 Potential Distributivity

Recall that out of the four operators of P, three are commuta-
tive (i.e., •→−•, ∥∀, and ∥∃) and one is not (i.e.,⇋). Only when
the latter is the operator outside the parentheses, therefore,
distributivity from right and left might differ. That gives rise
to 2 ×

(3
1
)
+ 2 ×

(3
2
)
= 12 possible ways for distributing P

operators over one another.
We established three (Lemmata 6.1–6.4) and refuted two

(Remark 5.10). Out of the remaining 7, we have selected
3, for which we have come to condition equations we do
not know how to solve in their full generality, if soluble at
all. Nevertheless, our understanding is that if spelled out
properly, those conditions can help the practising ΔQSD
engineer with their specific decision makings if they come
to require instances of such distributivities.

Right-Distributivity of Probabilistic Choice over Se-
quential Composition. When observing time, for

(𝑜1 •→−• 𝑜2)
𝑚
⇋
𝑚′ 𝑜3

?
= (𝑜1

𝑚
⇋
𝑚′ 𝑜3) •→−• (𝑜2

𝑚
⇋
𝑚′ 𝑜3) (10)

to hold, according to Proposition 5.1,

ΔQ[[(𝑜1 •→−• 𝑜2)
𝑚
⇋
𝑚′ 𝑜3]]

=
𝑚

𝑚 +𝑚′

∫
(𝛿 ′1 ∗ 𝛿 ′2) (𝑡) d𝑡 +

𝑚′

𝑚 +𝑚′𝛿3

=
𝑚

𝑚 +𝑚′

∬
𝛿 ′1 (𝜏)𝛿 ′2 (𝑡 − 𝜏) d𝜏 d𝑡 + 𝑚′

𝑚 +𝑚′𝛿3 (11)

and

ΔQ[[(𝑜1
𝑚
⇋
𝑚′ 𝑜3) •→−• (𝑜2

𝑚
⇋
𝑚′ 𝑜3)]]

=

∫ (
𝑚

𝑚 +𝑚′𝛿
′
1 +

𝑚′

𝑚 +𝑚′𝛿
′
3

)
∗(

𝑚

𝑚 +𝑚′𝛿
′
2 +

𝑚′

𝑚 +𝑚′𝛿
′
3

)
(𝑡) d𝑡

=

∬ (
𝑚

𝑚 +𝑚′𝛿
′
1 (𝑡) +

𝑚′

𝑚 +𝑚′𝛿
′
3 (𝑡)

)
×(

𝑚

𝑚 +𝑚′𝛿
′
2 (𝑡 − 𝜏) + 𝑚′

𝑚 +𝑚′𝛿
′
3 (𝑡 − 𝜏)

)
d𝜏 d𝑡 (12)

7



For Equation (10) to hold, the right-hand-sides of Equa-
tions (11) and (12) need to be equal. That is,

𝑚

𝑚 +𝑚′

∬
𝛿 ′1 (𝜏)𝛿 ′2 (𝑡 − 𝜏) d𝜏 d𝑡 + 𝑚′

𝑚 +𝑚′𝛿3 =∬ (
𝑚

𝑚 +𝑚′𝛿
′
1 (𝑡) +

𝑚′

𝑚 +𝑚′𝛿
′
3 (𝑡)

)
×(

𝑚

𝑚 +𝑚′𝛿
′
2 (𝑡 − 𝜏) + 𝑚′

𝑚 +𝑚′𝛿
′
3 (𝑡 − 𝜏)

)
d𝜏 d𝑡 (13)

That is a differential equation we do not know a solution for
in its full generality. Given particular values for 𝛿1, 𝛿2, and
𝛿3, however, the ΔQSD practitioner might be able to solve it,
if soluble at all.

Distributivity of Sequential Composition over All-to-
Finish. We proceed similarly for

(𝑜1 ∥∀ 𝑜2) •→−• 𝑜3
?
= (𝑜1 •→−• 𝑜3) ∥∀ (𝑜2 •→−• 𝑜3) (14)

According to Proposition 5.1,

ΔQ[[(𝑜1 ∥∀ 𝑜2) •→−• 𝑜3]]

=

∫
((𝛿1𝛿2) ′ ∗ 𝛿 ′3) (𝑡) d𝑡

=

∫
((𝛿1𝛿 ′2 + 𝛿 ′1𝛿2) ∗ 𝛿 ′3) (𝑡) d𝑡

=

∬
(𝛿1 (𝑡)𝛿 ′2 (𝑡) + 𝛿 ′1 (𝑡)𝛿2 (𝑡))𝛿3 (𝑡 − 𝜏) d𝜏 d𝑡

and

ΔQ[[(𝑜1 •→−• 𝑜3) ∥∀ (𝑜2 •→−• 𝑜3)]] =∬
𝛿 ′1 (𝑡)𝛿 ′3 (𝑡 − 𝜏) d𝜏 d𝑡

∬
𝛿 ′2 (𝑡)𝛿 ′3 (𝑡 − 𝜏) d𝜏 d𝑡

which together imply that, in order for Equation (14) to hold,
solubility of the following differential equation is required:∬

(𝛿1 (𝑡)𝛿 ′2 (𝑡) + 𝛿 ′1 (𝑡)𝛿2 (𝑡))𝛿3 (𝑡 − 𝜏) d𝜏 d𝑡 =∬
𝛿 ′1 (𝑡)𝛿 ′3 (𝑡 − 𝜏) d𝜏 d𝑡

∬
𝛿 ′2 (𝑡)𝛿 ′3 (𝑡 − 𝜏) d𝜏 d𝑡 . (15)

Right-Distributivity of Probabilistic Choice over All-
to-Finish. Timeliness analysis of the following equation

(𝑜1 ∥∀ 𝑜2)
𝑚
⇋
𝑚′ 𝑜3

?
= (𝑜1

𝑚
⇋
𝑚′ 𝑜3) ∥

∀ (𝑜2
𝑚
⇋
𝑚′ 𝑜3) (16)

leads easily to
𝑚

𝑚 +𝑚′ (𝛿1𝛿2) +
𝑚′

𝑚 +𝑚′𝛿3 =(
𝑚

𝑚 +𝑚′𝛿1 +
𝑚′

𝑚 +𝑚′𝛿3

) (
𝑚

𝑚 +𝑚′𝛿2 +
𝑚′

𝑚 +𝑚′𝛿3

)
(17)

This is clearly contradictory, so this distributivity does not
hold.

Remark 7.1. Intuitively, the three distributivity results in-
vestigated in this section all suffer from the same problem.
They are unphysical! Take Equation (16), for example, de-
pending on how the probabilistic choice goes in reality, there

is always a chance for 𝑜3 to be performed twice on the right-
hand-side; yet, there is only chance for one performance of
it on the left-hand-side. We suspect, therefore, that those
equivalences essentially do not hold, even though we do not
yet have complete mathematical evidence for this. That is
a call for a more elaborate mathematical framework, which
we will discuss in Section 9.

8 Other Equivalences Used in Practice

ΔQSD is already in use by its practitioners, who, amongst
other usages, simplify outcome expressions according to
their timeliness analysis. In particular, Figure 1 distils a list
of equivalences that are used in such simplifications. In this
section, we will prove those equivalences one by one.
These equivalences provide the basis for rewrite rules

that are useful for construction of normal forms, such as
expressing a given system as a convolution of probabilis-
tic choices or a probabilistic choice of convolutions. Such
rewriting allows for: extraction of common sub-expressions
permitting aggregation of failure rates (distinguishing be-
tween conditional and non-conditional failure); identifying
minimal delays; and, highlighting branching probabilities to
identify issues of relative criticality. This is useful for quickly
assessing whether a particular outcome decomposition is
feasible without having to compute the complete ΔQ. For
example, if we express each ΔQ as a convolution of a Dirac δ
function withmass at some time 𝑡 with a distribution starting
at zero, then the identities can be used to bring the δ func-
tions together. Using the identity δ(𝑡1) ∗ δ(𝑡2) = δ(𝑡1 + 𝑡2),
the minimum delay can be extracted from this normal form;
if this exceeds the maximum delay of the specification then
the system is infeasible and the design needs to be revised.
Before we delve into Figure 1, we prove a result about

re-associating probabilistic choice. Given an expression with
two consecutive probabilistic choices, one of which wrapped
inside a pair of parentheses, the ΔQSD practitioner might be
interested in wrapping the other two inside a pair of paren-
theses – re-associating the probabilistic choices, in effect.
Lemmata 8.1 and 8.2 give the conditions on the coefficients
of those probabilistic choices.

Rather than the notation introduced in Definition 2.1, how-
ever, Lemmata 8.1 and 8.2 employ an equivalent notation
which is slightly different and more compact:

𝑜1
[𝑝 ]
⇋ 𝑜2

shows a probabilistic choice, the probability of which reduc-
ing to 𝑜1 is 𝑝 . One concludes immediately that, in such a case,
the probability of the above outcome expression reducing to
𝑜2 is 1 − 𝑝 .

The reason why we rather choose this compact notation
in this section is that expressing relationships between the
coefficients in this notation is considerably less involved, as
one sees in Lemmata 8.1 and 8.2.
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⊥⇋ ⊥ = ⊥ ⊤⇋ ⊤ = ⊤ ⊥ •→−• 𝑜 = ⊥ 𝑜 •→−• ⊥ = ⊥ ⊤ •→−• 𝑜 = 𝑜 𝑜 •→−• ⊤ = 𝑜

(𝑜1⇋ ⊥) •→−• 𝑜2 = (𝑜1 •→−• 𝑜2)⇋ ⊥ 𝑜1 •→−• (𝑜2⇋ ⊥) = (𝑜1 •→−• 𝑜2)⇋ ⊥ (𝑜1⇋ ⊤) •→−• 𝑜2 = (𝑜1 •→−• 𝑜2)⇋ 𝑜2

𝑜1 •→−• (𝑜2⇋ ⊤) = (𝑜1 •→−• 𝑜2)⇋ 𝑜1 ⊥ [𝑝 ]
⇋ (⊥ [𝑞 ]

⇋ 𝑜) = ⊥ [𝑝+(1−𝑝)𝑞 ]
⇋ 𝑜 𝑜1

[𝑝 ]
⇋ (𝑜2 [𝑞 ]

⇋ ⊤) = 𝑜2
[𝑞 (1−𝑝) ]
⇋ (𝑜1

[
𝑝

1−𝑞 (1−𝑝 )

]
⇋

⊤)

Figure 1. Equivalences Already in Use in the Practice of ΔQSD

Lemma 8.1. 𝑜1
[𝑝 ]
⇋ (𝑜2 [𝑞 ]

⇋ 𝑜3) = (𝑜1 [𝑝′ ]
⇋ 𝑜2) [𝑞′ ]

⇋ 𝑜3 iff

𝑝 ′ =
𝑝

1 − (1 − 𝑝) (1 − 𝑞) (18) 𝑞′ = 1 − (1 − 𝑝) (1 − 𝑞) (19)

Proof.

𝑜1
[𝑝 ]
⇋ (𝑜2 [𝑞 ]

⇋ 𝑜3) = (𝑜1 [𝑝′ ]
⇋ 𝑜2) [𝑞′ ]

⇋ 𝑜3 ⇔
ΔQ[[𝑜1 [𝑝 ]

⇋ (𝑜2 [𝑞 ]
⇋ 𝑜3)]] = ΔQ[[(𝑜1 [𝑝′ ]

⇋ 𝑜2) [𝑞′ ]
⇋ 𝑜3]] ⇔

𝑝𝛿1 + (1 − 𝑝) [𝑞𝛿2 + (1 − 𝑞)𝛿3] =
𝑞′[𝑝 ′𝛿1 + (1 − 𝑝 ′)𝛿2] + (1 − 𝑞′)𝛿3

which gives rise to a system of three equations with two
variables 𝑝 ′ and 𝑞′:

𝑝 = 𝑝 ′𝑞′ (20) (1 − 𝑝)𝑞 = (1 − 𝑝 ′)𝑞′ (21)
(1 − 𝑝) (1 − 𝑞) = 1 − 𝑞′ (22)

One gets Equation (19) readily from Equation (22). Then,
Equation (18) follows from Equation (20). One can also check
the above system of equations for consistency by swapping
Equations (18) and (19) into Equation (21). □

Lemma 8.2. (𝑜1 [𝑝 ]
⇋ 𝑜2) [𝑞 ]

⇋ 𝑜3 = 𝑜1
[𝑝′ ]
⇋ (𝑜2 [𝑞′ ]

⇋ 𝑜3) iff

𝑝 ′ = 𝑝𝑞 (23) 𝑞′ = 𝑞(1 − 𝑝)
1 − 𝑝𝑞

(24)

Proof.

(𝑜1 [𝑝 ]
⇋ 𝑜2) [𝑞 ]

⇋ 𝑜3 = 𝑜1
[𝑝′ ]
⇋ (𝑜2 [𝑞′ ]

⇋ 𝑜3) ⇔
ΔQ[[(𝑜1 [𝑝 ]

⇋ 𝑜2) [𝑞 ]
⇋ 𝑜3]] = ΔQ[[𝑜1 [𝑝′ ]

⇋ (𝑜2 [𝑞′ ]
⇋ 𝑜3)]] ⇔

𝑞 [𝑝𝛿1 + (1 − 𝑝)𝛿2] + (1 − 𝑞)𝛿3 =
𝑝 ′𝛿1 + (1 − 𝑝 ′) [𝑞′𝛿2 + (1 − 𝑞′)𝛿3]

which gives rise to a system of three equations with two
variables 𝑝 ′ and 𝑞′:

𝑝 ′ = 𝑝𝑞 (25) (1 − 𝑝)𝑞 = (1 − 𝑝 ′)𝑞′ (26)
(1 − 𝑝 ′) (1 − 𝑞′) = 1 − 𝑞 (27)

Equation (25) is already Equation (23). Substituting Equa-
tion (25) into Equation (26), one gets:

(1 − 𝑝𝑞)𝑞′ = (1 − 𝑝)𝑞 ⇒ 𝑞′ =
𝑞(1 − 𝑝)
1 − 𝑝𝑞

.

One can also check the above system of equations for con-
sistency by swapping Equations (23) and (24) into Equa-
tion (27). □

Lemma 8.3. The equivalences in Fig. 1 are correct.

Proof. We will go through them one-by-one, starting from
the top left to the bottom right.

• ⊥
𝑚1
⇋
𝑚2

⊥ = ⊥

ΔQ[[⊥
𝑚1
⇋
𝑚2

⊥]] = 𝑚1

𝑚1 +𝑚2
0 + 𝑚2

𝑚1 +𝑚2
0 = 0 = ΔQ[[⊥]] .

• ⊤
𝑚1
⇋
𝑚2

⊤ = ⊤

ΔQ[[⊤
𝑚1
⇋
𝑚2

⊤]] = 𝑚1

𝑚1 +𝑚2
1 + 𝑚2

𝑚1 +𝑚2
1 = 1 = ΔQ[[⊤]] .

• ⊥•→−•𝑜 = ⊥ and 𝑜 •→−•⊥ = ⊥were already established
in the proof of Theorem 5.3.

• ⊤ •→−• 𝑜 = 𝑜 and 𝑜 •→−•⊤ = 𝑜 were already established
in the proof of Theorem 5.3.

• (𝑜1⇋ ⊥) •→−• 𝑜2 = (𝑜1 •→−• 𝑜2)⇋ ⊥
By Lemma 6.2 and the third equivalence of this lemma:

(𝑜1⇋⊥)•→−•𝑜2 = (𝑜1•→−•𝑜2)⇋ (⊥•→−•𝑜2) = (𝑜1•→−•𝑜2)⇋⊥.

• 𝑜1 •→−• (𝑜2⇋ ⊥) = (𝑜1 •→−• 𝑜2)⇋ ⊥
By Lemma 6.1 and the fourth equivalence of this lemma:

𝑜1•→−•(𝑜2⇋⊥) = (𝑜1•→−•𝑜2)⇋ (𝑜1•→−•⊥) = (𝑜1•→−•𝑜2)⇋⊥.

• (𝑜1⇋ ⊤) •→−• 𝑜2 = (𝑜1 •→−• 𝑜2)⇋ 𝑜2
By Lemma 6.2 and the fifth equivalence of this lemma:

(𝑜1⇋⊤)•→−•𝑜2 = (𝑜1•→−•𝑜2)⇋ (⊤•→−•𝑜2) = (𝑜1•→−•𝑜2)⇋𝑜2.

• 𝑜1 •→−• (𝑜2⇋ ⊤) = (𝑜1 •→−• 𝑜2)⇋ 𝑜1
By Lemma 6.1 and the sixth equivalence of this lemma:

𝑜1•→−•(𝑜2⇋⊤) = (𝑜1•→−•𝑜2)⇋ (𝑜1•→−•⊤) = (𝑜1•→−•𝑜2)⇋𝑜1.

• ⊥ [𝑝 ]
⇋ (⊥ [𝑞 ]

⇋ 𝑜) = ⊥ [𝑝+(1−𝑝)𝑞 ]
⇋ 𝑜

According to Lemma 8.1,⊥ [𝑝 ]
⇋ (⊥ [𝑞 ]

⇋𝑜) = (⊥ [𝑝′ ]
⇋ ⊥) [𝑞

′ ]
⇋ 𝑜

for some 𝑝 ′ and 𝑞′. The formulation of 𝑝 ′ in terms of
𝑝 and 𝑞 does not matter because, according to the first
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equivalence of this lemma, ⊥ [𝑝′ ]
⇋ ⊥ = ⊥. On the other

hand,

𝑞′ = 1−(1−𝑝) (1−𝑞) = 1−(1−𝑝−𝑞+𝑝𝑞) = 𝑝+𝑞−𝑝𝑞 = 𝑝+(1−𝑝)𝑞.

• 𝑜1
[𝑝 ]
⇋ (𝑜2 [𝑞 ]

⇋ ⊤) = 𝑜2
[𝑞 (1−𝑝) ]
⇋ (𝑜1

[
𝑝

1−𝑞 (1−𝑝 )

]
⇋

⊤).
Let 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, and 𝑞3 be probability values such
that
1. 𝑜1 [𝑝 ]

⇋ (𝑜2 [𝑞 ]
⇋ ⊤) = (𝑜1 [𝑝1 ]

⇋ 𝑜2) [𝑞1 ]
⇋ ⊤

2. (𝑜1 [𝑝1 ]
⇋ 𝑜2) [𝑞1 ]

⇋ ⊤ = (𝑜2 [𝑝2 ]
⇋ 𝑜1) [𝑞2 ]

⇋ ⊤
3. (𝑜2 [𝑝2 ]

⇋ 𝑜1) [𝑞2 ]
⇋ ⊤ = 𝑜2

[𝑝3 ]
⇋ (𝑜1 [𝑞3 ]

⇋ ⊤)
The aim is to calculate 𝑝3 and 𝑞3 in terms of 𝑝 and 𝑞.
We proceed in a stepwise fashion.
According to Lemma 8.1,

𝑝1 =
𝑝

1 − (1 − 𝑝) (1 − 𝑞) (28)

𝑞1 = 1 − (1 − 𝑝) (1 − 𝑞). (29)

On the other hand, it is easy to verify that

𝑝2 = 1 − 𝑝1 (30)
𝑞2 = 𝑞1. (31)

Finally, by Lemma 8.2,

𝑝3 = 𝑝2𝑞2 (32)

𝑞3 =
𝑞2 (1 − 𝑝2)
1 − 𝑝2𝑞2

(33)

Substituting Equations (28) and (29) into Equations (30)
and (31), one gets:

𝑝2 = 1 − 𝑝1 = 1 − 𝑝

1 − (1 − 𝑝) (1 − 𝑞)

= �𝑝 + 𝑞 − 𝑝𝑞 − �𝑝

1 − (1 − 𝑝) (1 − 𝑞) =
𝑞(1 − 𝑝)

1 − (1 − 𝑝) (1 − 𝑞) (34)

𝑞2 = 𝑞1 = 1 − (1 − 𝑝) (1 − 𝑞). (35)

Then, substituting Equations (34) and (35) into Equa-
tions (32) and (33), one gets:

𝑝3 = 𝑝2𝑞2 =
𝑞(1 − 𝑝)

((((((((1 − (1 − 𝑝) (1 − 𝑞)
×(((((((((
(1 − (1 − 𝑝) (1 − 𝑞))

= 𝑞(1 − 𝑝) (36)

𝑞3 =
𝑞2 (1 − 𝑝2)
1 − 𝑝2𝑞2

= (1 − (1 − 𝑝) (1 − 𝑞)) ×
1 − 𝑞(1 − 𝑝)

1 − (1 − 𝑝) (1 − 𝑞)
1 − 𝑞(1 − 𝑝)

=
1 − (1 − 𝑝) (1 − 𝑞) − 𝑞(1 − 𝑝)

1 − 𝑞(1 − 𝑝)

=
𝑝 + �𝑞 −��𝑝𝑞 − �𝑞 +��𝑝𝑞

1 − 𝑞(1 − 𝑝) =
𝑝

1 − 𝑞(1 − 𝑝) (37)

Equations (36) and (37) imply that

𝑜1
[𝑝 ]
⇋ (𝑜2 [𝑞 ]

⇋ ⊤) = 𝑜2
[𝑞 (1−𝑝) ]
⇋ (𝑜1

[
𝑝

1−𝑞 (1−𝑝 )

]
⇋

⊤).

□

Example usage: It is very useful in practice to be able to
make a rapid assessment of a system’s likely failure rate. Such
rates can be directly extracted from the timeliness analysis.
For example, if we write the sequential composition of two
outcomes that may fail as (𝑜1 [𝑎]

⇋ ⊥) •→−• (𝑜2 [𝑏 ]
⇋ ⊥), so that

the failure probabilities are made explicit, we can use the
identities of Figure 1 to bring out the failure probability of
the combination.

(𝑜1 [𝑎]
⇋ ⊥) •→−• (𝑜2 [𝑏 ]

⇋ ⊥) = (Lemmata 6.1 and 8.3)

((𝑜1 [𝑎]
⇋ ⊥) •→−• 𝑜2) [𝑏 ]

⇋ ⊥ = (Lemmata 6.2 and 8.3)

((𝑜1 •→−• 𝑜2) [𝑎]
⇋ ⊥) [𝑏 ]

⇋ ⊥ = (Lemmata 8.2 and 8.3)

(𝑜1 •→−• 𝑜2) [𝑎𝑏 ]
⇋ ⊥

Other equivalences can be used to accumulate failure proba-
bilities in more complex outcome expressions. Appropriate
use of algebraic rewriting, can allow for symbolic extrac-
tion of failure rates depending only on the decomposition
in terms of outcomes. Creating symbolic relationships be-
tween outcome decompositions can permit more principled
pruning of the design space.

Remark 8.4. The very last equivalence in Fig. 1 was incor-
rectly formulated prior to this paper. Thanks to the formali-
sation developed in this paper, that mistake was corrected.

9 Conclusion and Future Work

This paper lays down model-theoretic foundations for re-
source analysis à la ΔQSD. On that foundation, it builds par-
ticularly for time as a resource consumed by outcomes. In do-
ing so, it enables timeliness analysis via the study of quality
attenuation, capturing both delay and failure together. With
our focus being on timeliness exclusively, we give proofs
for the algebraic structures the ΔQSD operators form with
outcome expressions (Theorems 5.2–5.6). We refute the for-
mation of richer algebraic structures by the ΔQSD opera-
tors and outcome expressions (Remarks 5.5, 5.7, and 5.10).
We prove distributivity results about the ΔQSD operators
(Lemmata 6.1–6.4) and provide guidelines for studying the
existence of potential distributivity (Section 7). Finally, we
prove a dozen of equivalences that have already been used
in the practice of ΔQSD over the past few decades (Lem-
mata 8.1–8.3).
Study of the algebraic properties of other resources à la

ΔQSD is our immediate future work. An algebraic categori-
sation of resources is expected eventually.
A sound theoretical foundation is essential for the con-

struction of robust tool support, which is a prerequisite for
wider application of the ΔQSD paradigm. Currently, there is
a numerically-based tool prototype. Yet, to deal effectively
with large complex systems, this needs to be made more
symbolic. The aim is for the expressions to be simplified
before calculation, and to be able to represent performance
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unknowns. Algebraic structures are essential for correctly
manipulating and simplifying expressions. This work in-
forms both ongoing practical work and tool development.
Conversely, consideration of specific aspects of system de-
sign and operation inform the most productive directions
for the theoretical developments.
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Simple Cache

January 19, 2023

[1]: import DeltaQ.Workbench
import Text.Printf
import Data.Maybe

1 Simple ‘Cache’ performance optimisation example
Time is but an illusion - Lunch Time doubly so. Choose your scaling factor as needed

You have an existing service (‘off the shelf’) that takes between 4s and 6s and has an (inherent)
failure ratio of 0.1% (99.9% success).

[2]: x1 = (�) (999/1000) perfection bottom � uniform 4 6 :: DeltaQ
printf "Simplified expression: %s" (show x1)
printf "CoTS reliabilty: %f" $ 1 - lossprob x1
plotDQs "Existing Service" [("CoTS", x1)]

Simplified expression: � (999�1) � � ��4.0� � �[0,2.0]

CoTS reliabilty: 0.999

1



The desire is to create an optimised service that delivers 50% of its outcomes within 3s, 95% of
them within 5s and 99.95% within 6s.

[4]: qta1 = fromQTA [(0.5, 3), (0.95, 5), (0.9995, 6)] :: DeltaQ
printf "Minimum acceptable reliablity: %f" $ 1 - lossprob qta1
plotDQs "Desired QTA (resulting �Q)" [("QTA", qta1)]

Minimum acceptable reliablity: 0.9995

2



[5]: plotDQs "Design Gap (Slack/Hazard)" [("QTA", qta1), ("CoTS", x1)]
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As can be seen, this is (almost) entirely “in hazard”. Can caching help? How much performance is
needed in the cache? What sort of cache hit rates are needed?

Cache lookups take time (say 0.1s), we will also assume that the CoTS system is relatively pre-
cious/expensive so we will not make concurrent lookups against it.

A �Q model of the cache - takes some time, has some success probabilty then either responds from
cache or falls back on the CoTS service. We are assuming that the cache has a reliablity of 99.999
(five nines)

[6]: cacheModel cacheHitRate hitDq missDq = (�) 0.99999 (� 0.1 � (�) cacheHitRate␣
↪hitDq missDq) bottom

[8]: try1 = cacheModel (99/100) (uniform 1 2) x1 :: DeltaQ
printf "System reliablilty: %f" $ 1 - lossprob try1
plotDQs "Attempt One" [("QTA", qta1), ("99% hit rate", try1)]

System reliablilty: 0.9999800001

So it works, but (for the sake of argument) that sort of cache is ‘expensive’. There is plenty of
‘slack’ in the proposed solution - could we live with a lower hit rate? Budget would suggest a 50%
hit rate was more affordable.
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[9]: try2 = cacheModel (50/100) (uniform 1 2) x1 :: DeltaQ
plotDQs "Attempt Two" [("QTA", qta1), ("50% hit rate", try2)]

This is looking promising - but we’re not meeting the QTA (between about 5s and 6s); could we
introduce a two level cache? The second level cache is slower, it takes between 1.5s and 4s to yeild
a result, however it is cheaper, let’s size it for 50% hit rate.

We’ll assume that we sequentially check each cache before reaching out to the underlying service.

[10]: try3 = cacheModel (50/100) (uniform 1 2) (cacheModel (50/100) (uniform 1.5 4)␣
↪x1)

plotDQs "Attempt Three" [("QTA", qta1), ("50%/50% hit rate - 2 levels", try3)]
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This is nearly there. However the cost differential between the L1 and L2 cache is large, for every
1% of reduction in L1 we can have 2.5%-3/0% increase in L2 for the same price. Perhaps we can
do a bit better?

[11]: try4 = cacheModel (30/100) (uniform 1 2) (cacheModel (90/100) (uniform 1.5 4)␣
↪x1)

plotDQs "Attempt Four" [("QTA", qta1), ("30%/90% hit rate - 2 levels", try4)]
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Of course, the budget is everything and anything we can do shrink that L1 cache frees up some
monetary slack….

[12]: try5 = cacheModel (20/100) (uniform 1 2) (cacheModel (90/100) (uniform 1.5 4)␣
↪x1) :: DeltaQ

printf "System Reliability: %0.7f" $ 1 - lossprob try5
try5' = fromJust $ mmmv try5
printf "Min/max response Time: %0.3f/%0.3f, mean/stddev: %0.3f/%0.3f" (mmmvMin␣

↪try5') (mmmvMax try5') (mmmvMean try5') (sqrt $ mmmvVar try5')
plotDQs "'Cost' Optimal" [("QTA", qta1), ("20%/90% hit rate - 2 levels", try5)]

System Reliability: 0.9999020

Min/max response Time: 1.100/6.200, mean/stddev: 2.860/0.647
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We have investigated (to some level of fidelity) a design space that takes a CoTS, adds a front-end
cache to create a performance (and ‘cost’ optimal) solution.

Not only were we able to optimise with respect to performance and cost, we were also able to ensure
that the resulting system reliablity exceeded the target (Note: the cache component reliability has
to be at least four nines - but that is just a parameter in the model).

We have done this exploration graphically, but that was just for pedagogical purposes - all the
underlying properties for automation are present.
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